-
UK public urged to keep eyes peeled for washed-up bananas
-
South Korea chip giant SK hynix mulls US stock market listing
-
Captain Cummins back in Australia squad for third Ashes Test
-
NFL Colts to bring 44-year-old QB Rivers out of retirement: reports
-
West Indies 92-2 after being asked to bat in second New Zealand Test
-
Ruckus in Brazil Congress over bid to reduce Bolsonaro jail term
-
ExxonMobil slows low-carbon investment push through 2030
-
Liverpool's Slot swerves further Salah talk after late Inter win
-
Maresca concerned as Atalanta fight back to beat Chelsea
-
Liverpool edge Inter in Champions League as Chelsea lose in Italy
-
Spurs sink Slavia Prague to boost last-16 bid in front of Son
-
Arsenal ensure Women's Champions League play-off berth
-
Canada launches billion dollar plan to recruit top researchers
-
Liverpool defy Salah crisis by beating Inter Milan in Champions League
-
Honduran leader alleges vote tampering, US interference
-
De Ketelaere inspires Atalanta fightback to beat Chelsea
-
Kounde double helps Barcelona claim Frankfurt comeback win
-
US Supreme Court weighs campaign finance case
-
Zelensky says ready to hold Ukraine elections, with US help
-
Autistic Scottish artist Nnena Kalu smashes Turner Prize 'glass ceiling'
-
Trump slams 'decaying' and 'weak' Europe
-
Injury-hit Arsenal in 'dangerous circle' but Arteta defends training methods
-
Karl and Gnabry spark Bayern to comeback win over Sporting
-
Thousands flee DR Congo fighting as M23 closes on key city
-
Indigenous artifacts returned by Vatican unveiled in Canada
-
Ivory Coast recall Zaha for AFCON title defence
-
Communist vs Catholic - Chile prepares to choose a new president
-
Trump's FIFA peace prize breached neutrality, claims rights group
-
NHL 'optimistic' about Olympic rink but could pull out
-
Thousands reported to have fled DR Congo fighting as M23 closes on key city
-
Three face German court on Russia spying charges
-
Amy Winehouse's father sues star's friends for auctioning her clothes
-
Woltemade's 'British humour' helped him fit in at Newcastle - Howe
-
UK trial opens in dispute over Jimi Hendrix recordings
-
Pandya blitz helps India thrash South Africa in T20 opener
-
Zelensky says will send US revised plan to end Ukraine war
-
Miami's Messi wins second consecutive MLS MVP award
-
Trump slams 'decaying' Europe and pushes Ukraine on elections
-
TotalEnergies in deal for Namibia offshore oil field
-
Jesus added to Arsenal's Champions League squad
-
Red Bull part ways with influential advisor Marko
-
India's biggest airline IndiGo says operations 'back to normal'
-
Venezuela's 'joropo' dance declared a UNESCO treasure
-
Salah trains in Liverpool as Saudis plan winter transfer move
-
Police raid Argentine football HQ, clubs in graft probe
-
Ukraine should hold elections, Trump says
-
Anguished Sri Lankans queue for care after deadly cyclone
-
Save the Elephants founder Iain Douglas-Hamilton dies at 83
-
Why west African troops overturned Benin's coup but watched others pass by
-
Microsoft announces $17.5 bn investment in India, its 'largest ever' in Asia
What are proteins again? Nobel-winning chemistry explained
The Nobel Prize in Chemistry was awarded on Wednesday to three scientists who have help unravel some of the enduring secrets of proteins, the building blocks of life.
While Demis Hassabis and John Jumper of Google's DeepMind lab used artificial intelligence techniques to predict the structure of proteins, biochemist David Baker managed to design totally new ones never seen in nature.
These breakthroughs are hoped to lead towards numerous advances, from discovering new drugs to enzymes that decompose pollutants.
Here is an explainer about the science behind the Nobel win.
- What are proteins? -
Proteins are molecules that serve as "the factories of everything that happens in our body," Davide Calebiro, a protein researcher at the UK's University of Birmingham, told AFP.
DNA provides the blueprint for every cell. Proteins then use this information to do the work of turning that cell into something specific -- such as a brain cell or a muscle cell.
Proteins are made up of 20 different kinds of amino acid. The sequence that these acids start out in determines what 3D structure they will twist and fold into.
American Chemical Society president Mary Carroll compared how this works to an old-fashioned telephone cord.
"So you could stretch out that telephone cord, and then you would just have a one-dimensional structure," she told AFP.
"Then it would spring back" into the 3D shape, she added.
So if chemists wanted to master proteins, they needed to understand how the 2D sequences turned into these 3D structures.
"Nature already provides tens of thousands of different proteins, but sometimes we want them to do something they do not yet know how to do," said French biochemist Sophie Sacquin-Mora.
- What did AI do? -
The work of previous Nobel winners had demonstrated that chemists should be able to look at amino acid sequences and predict the structure they would become.
But it was not so easy. Chemists struggled for 50 years -- there was even a biannual competition called the "Protein Olympics" where many failed the prediction test.
Enter Hassabis and Jumper. They trained their artificial intelligence model AlphaFold on all the known amino acid sequences and corresponding structures.
When given an unknown sequence, AlphaFold compares it with previous ones, gradually reconstructing the puzzle in three dimensions.
After the newer generation AlphaFold2 crushed the 2020 Protein Olympics, the organisers deemed the problem solved.
The model has now predicted the structure of almost all of the 200 million proteins known on Earth.
- What about the new proteins? -
US biochemist Baker started at the opposite end of the process.
First, he designed an entirely new protein structure never seen in nature.
Then, using a computer programme called Rosetta that he had developed, he was able to work out the amino acid sequence that it started out as.
To achieve this, Rosetta trawled through all the known protein structures, searching for short protein fragments similar to the structure it wanted to build.
Rosetta then tweaked them and proposed a sequence that could end up as the structure.
- What is all this for? -
Mastering such fundamental and important little machines as proteins could have a vast number of potential uses in the future.
"It allows us to better understand how life functions, including why some diseases develop, how antibiotic resistance occurs or why some microbes can decompose plastic," the Nobel website said.
Making all-new proteins could lead to new nanomaterials, targeted drugs and vaccines, or more climate-friendly chemicals, it added.
Asked to pick a favourite protein, Baker pointed to one he "designed during the pandemic that protects against the coronavirus".
Calebiro emphasised how "transformative" this research would be.
"I think this is just the beginning of a completely new era."
V.Dantas--PC